Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Electron. j. biotechnol ; 46: 55-64, jul. 2020. tab, graf
Article in English | LILACS | ID: biblio-1223246

ABSTRACT

BACKGROUND: Ethanol concentration (PE), ethanol productivity (QP) and sugar consumption (SC) are important values in industrial ethanol production. In this study, initial sugar and nitrogen (urea) concentrations in sweet sorghum stem juice (SSJ) were optimized for high PE (≥10%, v/v), QP, (≥2.5 g/L·h) and SC (≥90%) by Saccharomyces cerevisiae SSJKKU01. Then, repeated-batch fermentations under normal gravity (NG) and high gravity (HG) conditions were studied. RESULTS: The initial sugar at 208 g/L and urea at 2.75 g/L were the optimum values to meet the criteria. At the initial yeast cell concentration of ~1 × 108 cells/mL, the PE, QP and SC were 97.06 g/L, 3.24 g/L·h and 95.43%, respectively. Repeated-batch fermentations showed that the ethanol production efficiency of eight successive cycles with and without aeration were not significantly different when the initial sugar of cycles 2 to 8 was under NG conditions (~140 g/L). Positive effects of aeration were observed when the initial sugar from cycle 2 was under HG conditions (180­200 g/L). The PE and QP under no aeration were consecutively lower from cycle 1 to cycle 6. Additionally, aeration affected ergosterol formation in yeast cell membrane at high ethanol concentrations, whereas trehalose content under all conditions was not different. CONCLUSION: Initial sugar, sufficient nitrogen and appropriated aeration are necessary for promoting yeast growth and ethanol fermentation. The SSJ was successfully used as an ethanol production medium for a high level of ethanol production. Aeration was not essential for repeated-batch fermentation under NG conditions, but it was beneficial under HG conditions.


Subject(s)
Saccharomyces cerevisiae/metabolism , Sorghum/chemistry , Ethanol/metabolism , Saccharomyces cerevisiae/growth & development , Urea , Yeasts/growth & development , Aeration , Sorghum/microbiology , Ethanol/analysis , Sugars , Juices , Fermentation , Gravitation , Nitrogen
2.
Electron. j. biotechnol ; 26: 84-92, Mar. 2017. graf, tab
Article in English | LILACS | ID: biblio-1008992

ABSTRACT

Background: Fermentation process development has been very important for efficient ethanol production. Improvement of ethanol production efficiency from sweet sorghum juice (SSJ) under normal gravity (NG, 160 g/L of sugar), high gravity (HG, 200 and 240 g/L of sugar) and very high gravity (VHG, 280 and 320 g/L of sugar) conditions by nutrient supplementation and alternative feeding regimes (batch and fed-batch systems) was investigated using a highly ethanol-tolerant strain, Saccharomyces cerevisiae NP01. Results: In the batch fermentations without yeast extract, HG fermentation at 200 g/L of sugar showed the highest ethanol concentration (PE, 90.0 g/L) and ethanol productivity (QE, 1.25 g/L·h). With yeast extract supplementation (9 g/L), the ethanol production efficiency increased at all sugar concentrations. The highest PE (112.5 g/L) and QE (1.56 g/L·h) were observed with the VHG fermentation at 280 g/L of sugar. In the fed-batch fermentations, two feeding regimes, i.e., stepwise and continuous feedings, were studied at sugar concentrations of 280 g/L. Continuous feeding gave better results with the highest PE and QE of 112.9 g/L and 2.35 g/L·h, respectively, at a feeding time of 9 h and feeding rate of 40 g sugar/h. Conclusions: In the batch fermentation, nitrogen supplementation resulted in 4 to 32 g/L increases in ethanol production, depending on the initial sugar level in the SSJ. Under the VHG condition, with sufficient nitrogen, the fed-batch fermentation with continuous feeding resulted in a similar PE and increased QP by 51% compared to those in the batch fermentation.


Subject(s)
Sorghum/metabolism , Ethanol/metabolism , Biofuels , Fermentation , Saccharomyces cerevisiae/metabolism , Dietary Supplements , Sorghum/chemistry , Batch Cell Culture Techniques , Gravitation , Nitrogen
SELECTION OF CITATIONS
SEARCH DETAIL